Nucleostemin inhibits TRF1 dimerization and shortens its dynamic association with the telomere.

نویسندگان

  • Lingjun Meng
  • Joseph K Hsu
  • Qubo Zhu
  • Tao Lin
  • Robert Y L Tsai
چکیده

TRF1 is a key component of the telomere-capping complex and binds double-strand telomeric DNA as homodimers. So far, it is not clear whether TRF1 dimerization coincides with its telomere binding or is actively controlled before it binds the telomere, and in the latter case, how this event might affect its telomere association. We previously found that TRF1 dimerization and its telomere binding can be increased by GNL3L, which is the vertebrate paralogue of nucleostemin (NS). Here, we show that NS and GNL3L bind TRF1 directly but competitively through two separate domains of TRF1. In contrast to GNL3L, NS prevents TRF1 dimerization through a mechanism not determined by its ability to displace TRF1-bound GNL3L. Furthermore, NS is capable of shortening the dynamic association of TRF1 with the telomere in normal and TRF2(ΔBΔM)-induced telomere-damaged cells without affecting the amount of telomere-bound TRF1 proteins in vivo. Importantly, NS displays a protective function against the formation of telomere-dysfunction-induced foci. This work demonstrates that TRF1 dimerization is actively and oppositely regulated by NS and GNL3L extrachromosomally. Changing the relative amount of TRF1 monomers versus dimers in the nucleoplasm might affect the dynamic association of TRF1 with the telomere and the repair of damaged telomeres.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GNL3L stabilizes the TRF1 complex and promotes mitotic transition

Telomeric repeat binding factor 1 (TRF1) is a component of the multiprotein complex "shelterin," which organizes the telomere into a high-order structure. TRF1 knockout embryos suffer from severe growth defects without apparent telomere dysfunction, suggesting an obligatory role for TRF1 in cell cycle control. To date, the mechanism regulating the mitotic increase in TRF1 protein expression and...

متن کامل

Nucleostemin delays cellular senescence and negatively regulates TRF1 protein stability.

Nucleostemin (NS) encodes a nucleolar GTP-binding protein highly enriched in the stem cells and cancer cells. To determine its biological activity in vivo, we generated NS loss- and gain-of-function mouse models. The embryogenesis of homozygous NS-null (NS(-/-)) mice was aborted before the blastula stage. Although the growth and fertility of heterozygous NS-null (NS(+/-)) mice appeared normal, ...

متن کامل

Nucleostemin prevents telomere damage by promoting PML-IV recruitment to SUMOylated TRF1

Continuously dividing cells must be protected from telomeric and nontelomeric DNA damage in order to maintain their proliferative potential. Here, we report a novel telomere-protecting mechanism regulated by nucleostemin (NS). NS depletion increased the number of telomere damage foci in both telomerase-active (TA(+)) and alternative lengthening of telomere (ALT) cells and decreased the percenta...

متن کامل

A Dynamic Molecular Link between the Telomere Length Regulator TRF1 and the Chromosome End Protector TRF2

BACKGROUND Human telomeres are coated by the telomere repeat binding proteins TRF1 and TRF2, which are believed to function independently to regulate telomere length and protect chromosome ends, respectively. RESULTS Here, we show that TRF1 and TRF2 are linked via TIN2, a previously identified TRF1-interacting protein, and its novel binding partner TINT1. TINT1 localized to telomeres via TIN2...

متن کامل

Structure of the TRFH dimerization domain of the human telomeric proteins TRF1 and TRF2.

TRF1 and TRF2 are key components of vertebrate telomeres. They bind to double-stranded telomeric DNA as homodimers. Dimerization involves the TRF homology (TRFH) domain, which also mediates interactions with other telomeric proteins. The crystal structures of the dimerization domains from human TRF1 and TRF2 were determined at 2.9 and 2.2 A resolution, respectively. Despite a modest sequence id...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 124 Pt 21  شماره 

صفحات  -

تاریخ انتشار 2011